Biomass Program

Integration of Succinic Acid Production in a Dry Mill Ethanol Facility

Production cost and overall risk are major barriers in developing a biorefinery. This project seeks to address both issues for a dry mill ethanol biorefinery by lowering the cost of sugars with the development of an advanced pretreatment process, improving the economics of succinic acid (SA), and developing a model of an ethanol dry mill to evaluate the impact of adding different products and processes to a dry mill.

The pretreatment technology under development is an ammonia fiber explosion (AFEX) process. AFEX will maximize the sugar yield from biomass without the by-products that inhibit downstream processing. The use of enzymes to breakdown the resulting sugar polymers to simple sugars will be minimized, lowering overall sugar production costs.

Succinic acid is a chemical with the potential to be converted to a multitude of valuable products, including maleic anhydride. The production cost of SA will be reduced through optimized processing and an improved fermentation organism.

Lab-scale succinic acid fermentation

R&D Pathway

Researchers will demonstrate the AFEX pretreatment process with corn fiber and switchgrass and address enzyme recovery and re-use and sugar separation and purification methodologies. They will also optimize the batch SA process and investigate the potential of a two-stage process, develop a combined neutralization and recovery process at lab-scale, and develop an acid-tolerant SA production strain.

Lastly, they will create an economic model for the AFEX process and a new dry mill ethanol model, and evaluate existing (xylitol) and new technologies to be profitably integrated into ethanol dry mills.

Congressionally Directed Bioproducts R&D

Benefits

- Reduce cost of biomass sugars
- Lower production cost of succinic acid
- Enable cost-effective integration of bioproducts into ethanol plants

Applications

The project will help drive the viability of sugar biorefineries by reducing production costs and risks involved in upgrading an ethanol dry mill to a biorefinery.

Project Partners

Bolak and Company CTI Frasier-Barnes Heartland Grain Fuels MBI International National Renewable Energy Lab USDA-Agricultural Research Service

Project Period

FY 2003 - FY 2007

For more information contact:

Jim Spaeth
DOE Golden Field Office
Jim.Spaeth@go.doe.gov

EERE Information Center 1-877-EERE-INF (1-877-337-3463)

Visit the Web site for the Office of the Biomass Program (OBP) at www.eere.energy.gov/biomass.html

August 2006